Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Eur Heart J Open ; 1(3): oeab025, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1973138

ABSTRACT

Aims: Myocardial injury (MINJ) in Coronavirus disease 2019 (COVID-19) identifies individuals at high mortality risk but its clinical relevance is less well established for Influenza and no comparative analyses evaluating frequency and clinical implications of MINJ among hospitalized patients with Influenza or COVID-19 are available. Methods and results: Hospitalized adults with laboratory confirmed Influenza A or B or COVID-19 underwent highly sensitive cardiac T Troponin (hs-cTnT) measurement at admission in four regional hospitals in Canton Ticino, Switzerland. MINJ was defined as hs-cTnT >14 ng/L. Clinical, laboratory and outcome data were retrospectively collected. The primary outcome was mortality up to 28 days. Cox regression models were used to assess correlations between admission diagnosis, MINJ, and mortality. Clinical correlates of MINJ in both viral diseases were also identified. MINJ occurred in 94 (65.5%) out of 145 patients hospitalized for Influenza and 216 (47.8%) out of 452 patients hospitalized for COVID-19. Advanced age and renal impairment were factors associated with MINJ in both diseases. At 28 days, 7 (4.8%) deaths occurred among Influenza and 76 deaths (16.8%) among COVID-19 patients with a hazard ratio (HR) of 3.69 [95% confidence interval (CI) 1.70-8.00]. Adjusted Cox regression models showed admission diagnosis of COVID-19 [HR 6.41 (95% CI 4.05-10.14)] and MINJ [HR 8.01 (95% CI 4.64-13.82)] to be associated with mortality. Conclusions: Myocardial injury is frequent among both viral diseases and increases the risk of death in both COVID-19 and Influenza. The absolute risk of death is considerably higher in patients admitted for COVID-19 when compared with Influenza.

2.
Frontiers in medicine ; 8, 2021.
Article in English | EuropePMC | ID: covidwho-1957932

ABSTRACT

Introduction: Severe respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the androgen receptor (AR), through ACE2 receptor and TMPRSS2, to enter nasal and upper airways epithelial cells. Genetic analyses revealed that HSD3B1 P1245C polymorphic variant increases dihydrotestosterone production and upregulation of TMPRSS2 with respect to P1245A variant, thus possibly influencing SARS-CoV-2 infection. Our aim was to characterize the HSD3B1 polymorphism status and its potential association with clinical outcomes in hospitalized patients with COVID-19 in Southern Switzerland. Materials and Methods: The cohort included 400 patients hospitalized for COVID-19 during the first wave between February and May 2020 in two different hospitals of Canton Ticino. Genomic DNA was extracted from formalin-fixed paraffin-embedded tissue blocks, and HSD3B1 gene polymorphism was evaluated by Sanger sequencing. Statistical associations were verified using different test. Results:HSD3B1 polymorphic variants were not associated with a single classical factor related to worse clinical prognosis in hospitalized patients with SARS-CoV-2. However, in specific subgroups, HSD3B1 variants played a clinical role: intensive care unit admission was more probable in patients with P1245C diabetes compared with P1245A individuals without this comorbidity and death was more associated with hypertensive P1245A>C cases than patients with P1245A diabetes without hypertension. Discussion: This is the first study showing that HSD3B1 gene status may influence the severity of SARS-CoV-2 infection. If confirmed, our results could lead to the introduction of HSD3B1 gene status analysis in patients infected with SARS-CoV-2 to predict clinical outcome.

3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 07.
Article in English | MEDLINE | ID: covidwho-1066040

ABSTRACT

As the COVID-19 pandemic is spreading around the world, increasing evidence highlights the role of cardiometabolic risk factors in determining the susceptibility to the disease. The fragmented data collected during the initial emergency limited the possibility of investigating the effect of highly correlated covariates and of modeling the interplay between risk factors and medication. The present study is based on comprehensive monitoring of 576 COVID-19 patients. Different statistical approaches were applied to gain a comprehensive insight in terms of both the identification of risk factors and the analysis of dependency structure among clinical and demographic characteristics. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells by binding to the angiotensin-converting enzyme 2 (ACE2), but whether or not renin-angiotensin-aldosterone system inhibitors (RAASi) would be beneficial to COVID-19 cases remains controversial. The survival tree approach was applied to define a multilayer risk stratification and better profile patient survival with respect to drug regimens, showing a significant protective effect of RAASi with a reduced risk of in-hospital death. Bayesian networks were estimated, to uncover complex interrelationships and confounding effects. The results confirmed the role of RAASi in reducing the risk of death in COVID-19 patients. De novo treatment with RAASi in patients hospitalized with COVID-19 should be prospectively investigated in a randomized controlled trial to ascertain the extent of risk reduction for in-hospital death in COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme Inhibitors , COVID-19/mortality , COVID-19/physiopathology , COVID-19/virology , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics , Protective Agents , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Risk Factors , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL